Genetic algorithms are one of the most straightforward and powerful techniques used in machine learning. This book ‘Learning Genetic Algorithms with Python’ guides the reader right from the basics of genetic algorithms to its real practical implementation in production environments. \nEach of the chapters gives the reader an intuitive understanding of each concept. You will learn how to build a genetic algorithm from scratch and implement it in real-life problems. Covered with practical illustrated examples, you will learn to design and choose the best model architecture for the particular tasks. Cutting edge examples like radar and football manager problem statements, you will learn to solve high-dimensional big data challenges with ways of optimizing genetic algorithms.
Ivan Gridin is a mathematician, fullstack developer, data scientist, and machine learning expert living in Moscow, Russia. Over the years, he worked on distributive high-load systems and implemented different machine learning approaches in practice. One of the key areas of his research is design and analysis of predictive time series models. Ivan has fundamental math skills in probability theory, random process theory, time series analysis, machine learning, deep learning, and optimization. He also has an in-depth knowledge and understanding of various programming languages such as Java, Python, PHP, and MATLAB. He is a loving father, husband, and collector of old math books.
Ivan GridinAdd a review
Login to write a review.
Customer questions & answers